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Detrended fluctuation analysis (DFA) [1] and detrending moving average (DMA) [2] methods are
standardly used for fractional differencing parameter d (or alternatively Hurst exponent H) estimation.
Both methods have been utilized for construction of scale-characteristic correlation coefficients [3, 4]
that outperform standard correlation coefficient under long-range dependence [4, 5].

Recently, the DFA-based estimator of standard regression parameters has been proposed [6]. The
estimator possesses some desirable properties with regards to long-range dependence, trends, seasonali-
ties and heavy tails. The current paper contributes to the topical literature in two main ways.

First, we introduce the DMA-based estimator as a complement to the DFA-based one. And second,
we study properties of both estimators beyond the general fractional cointegration framework, i.e. we
examine a simple model

yt = α+ βxt + ut,

where xt ∼ I(d) and ut ∼ I(d − b) which implies yt ∼ I(max[d, d − b]). The fractional cointegration
requires b > 0 while the standard cointegration CI(1, 1) assumes xt, yt ∼ I(1) and ut ∼ I(0). We are
interested in various combinations of d and b parameters (0 ≤ d, b ≤ 1, i.e. we cover not only the
fractional cointegration framework). We provide a broad Monte Carlo simulation study focusing on
different time series lengths, combination of d and b parameters, and on possible spurious relationships.
Specifically, we compare the estimators based on DFA and DMA with the standard ordinary least squares
(OLS) procedure under true and spurious relationships (β = 0 and β 6= 0). Based on the bias, standard
error and mean squared error of the estimators, the new procedures outperform OLS for various settings
(e.g. with d = 1 and b < 0.5). Detailed results will be given in the full paper.
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